AVR Урок 22. Изучаем АЦП. часть 1 |

Описание 16-битного АЦП ADS1115, подключение к микроконтроллеру PIC16F628A

Motorhelp.ru диагностика и ремонт двигателя

Типовые параметры работы инжекторных двигателей ВАЗ.

Для многих начинающих диагностов и простых автолюбителей, которым интересна тема диагностики будет полезна информация о типичных параметрах двигателей. Поскольку наиболее распространенные и простые в ремонте двигатели автомобилей ВАЗ, то и начнем именно с них. На что в первую очередь надо обратить внимание при анализе параметров работы двигателя? 1. Двигатель остановлен. 1.1 Датчики температуры охлаждающей жидкости и воздуха (если есть). Проверяется температура на предмет соответствия показаний реальной температуре двигателя и воздуха. Проверку лучше производить с помощью бесконтактного термометра. К слову сказать, одни из самых надежных в системе впрыска двигателей ВАЗ – это датчики температуры.
1.2 Положение дроссельной заслонки (кроме систем с электронной педалью газа). Педаль газа отпущена – 0%, акселератор нажали – соответственно открытию дроссельной заслонки. Поиграли педалью газа, отпустили – должно также остаться 0%, ацп при этом с дпдз около 0,5В. Если угол открытия прыгает с 0 до 1-2%, то как правило это признак изношенного дпдз. Реже встречается неисправности в проводке датчика. При полностью нажатой педали газа некоторые блоки покажут 100% открытия (такие как январь 5.1 , январь 7.2), а другие как например Bosch MP 7.0 покажут только 75%. Это нормально.

1.3 Канал АЦП ДМРВ в режиме покоя: 0.996/1.016 В — нормально, до 1.035 В еще приемлемо, все что выше уже повод задуматься о замене датчика массового расхода воздуха. Системы впрыска, оснащенные обратной связью по датчику кислорода способны скорректировать до некоторой степени неверные показания ДМРВ, но всему есть предел, поэтому не стоит тянуть с заменой этого датчика, если он уже изношен.

2. Двигатель работает на холостом ходу.

2.1 Обороты холостого хода. Обычно это – 800 – 850 об/мин при полностью прогретом двигателе. Значение количества оборотов на холостом ходу зависят от температуры двигателя и задаются в программе управления двигателем.

2.2 Массовый расход воздуха. Для 8ми клапанных двигателей типичное значение составляет 8-10 кг/ч, для 16ти клапанных – 7 – 9,5 кг/час при полностью прогретом двигателе на холостом ходу. Для ЭБУ М73 эти значения несколько больше в связи с конструктивной особенностью.

2.3 Длительность времени впрыска. Для фазированного впрыска типичное значение составляет 3,3 – 4,1 мсек. Для одновременного – 2,1 – 2,4 мсек. Собственно не так важно само время впрыска, как его коррекция.

2.4 Коэффициент коррекции времени впрыска. Зависит от множества факторов. Это тема для отдельной статьи, здесь только стоит упомянуть, что чем ближе к 1,000 тем лучше. Больше 1,000 – значит смесь дополнительно обогащается, меньше 1,000 значит обедняется.

2.5 Мультипликативная и аддитивная составляющая коррекции самообучением. Типичное значение мультипликатива 1 +/-0,2. Аддитив измеряется в процентах и должен быть на исправной системе не более +/- 5%.

2.6 При наличии признака работы двигателя в зоне регулировки по сигналу датчика кислорода последний должен рисовать красивую синусоиду от 0,1 до 0,8 В.

2.7 Цикловое наполнение и фактор нагрузки. Для «январей» типичный цикловой расход воздуха: 8ми клапанный двигатель 90 – 100 мг/такт, 16ти клапанный 75 -90 мг/такт. Для блоков управления Bosch 7.9.7 типичный фактор нагрузки 18 – 24 %.

Коды АЦП

Параметры кодов АЦП относятся к аналоговым датчикам системы управления:

  • Датчик положения дроссельной заслонки
  • Датчик температуры
  • Датчик массового расхода воздуха
  • Датчик L-зонд
  • Потенциометр СО.

Физически, коды АЦП отражают напряжение, которое выдает датчик. Как правило, эти параметры используются для проверки цепей датчиков. Если возникают коды неисправности, связанные с низким или высоким уровнем сигнала такого датчика, то система управления работает по резервным режимам. При этом значение параметра, относящегося к этому датчику, выбирается либо из аварийной таблицы, либо рассчитывает по заданным формулам, например, температура охлаждающей жидкости при неисправном датчике температуры увеличивается по времени работы двигателя.

Если, при физическом изменении параметра, измеряемого датчиком, код АЦП остается величиной постоянной, то электрическая цепь подключения датчика неработоспособна.

Величины АЦП являются безразмерной величиной, но для пользователя в тестерах-сканерах их приводят к напряжению, которое выдает конкретный датчик.

Поэтому, используя код АЦП, например, с датчика L-зонд можно более наглядно оценивать работу в системе контура обратной связи по поддержанию стехиометрического состава смеси. Если датчик L-зонд неработоспособен, то код АЦП находится в диапазоне 0,4-0,7В.

Значение кода АЦП (выходное напряжение) с датчика положения дросселя может указать нижнюю границу, при котором система определяет ошибку датчика. Положению дроссельной заслонки равному нулю соответствует напряжение с датчика 0.52 В.

При включенном зажигании выходное напряжение с датчика массового расхода (код АЦП) должно равняться 1,00В.

Датчик температуры, датчик положения дроссельной заслонки, датчик массового расхода питаются напряжением 5,00В, которое выдает блок управления. Если блок управления выдает нестабильное напряжение, то показания датчиков будут меняться и поведение системы в этом случае непредсказуемо.

Оптимальная работа автомобильного двигателя зависит от многих параметров и устройств. Для обеспечения нормальной работоспособности моторы ВАЗ оснащаются различными датчиками, предназначенными для выполнения разных функций. Что нужно знать о диагностики и замене контроллеров и каковы параметры датчиков инжекторных двигателей ВАЗ таблица представлена в этой статье.

Типовые параметры работы инжекторных моторов ВАЗ

Проверка датчиков ВАЗ, как правило, осуществляется при обнаружении тех или иных проблем в работе контроллеров. Для диагностики желательно знать о том, какие неисправности датчиков ВАЗ могут произойти, это позволит быстро и правильно проверить устройство и своевременно заменить его. Итак, как проверить основные датчики ВАЗ и как их после этого заменить — читайте ниже.

Основные параметры контроллеров на инжекторных моторах ВАЗОсновные параметры контроллеров на инжекторных моторах ВАЗ

Виды ДМРВ их конструктивные особенности и принцип работы

Наибольшее распространение получили три вида волюметров:

  • Проволочные или нитевые.
  • Пленочные.
  • Объемные.

В первых двух принцип работы построен на получении сведений о массе воздушного потока путем измерения его температуры. В последних может быть задействовано два варианта учета:

  1. Путем изменения положения ползунка, приводимого в действие специальной лопастью, на которую воздействует воздушный поток, проходящий через прибор. Учитывая наличие трущихся механизмов, уровень надежности таких конструкций довольно низкий. Это стало основной причиной для отказа производителей авто от датчиков данного типа. Для ознакомления приведем упрощенный пример конструкции объемного расходомера.


    Устройство ДМРВ объемного типа

  2. Подсчетом вихрей Кармана. Они образуются в том случае, если ламинарный воздушный поток будет омывать препятствие, кромки которого достаточно острые. Частота срывающихся с них вихрей напрямую связана со скоростью потока воздуха, проходящего через устройство.


Конструкция вихревого датчика (широко используется производителем Mitsubishi Motors)

Обозначения:

  • А – датчик измерения давления, для фиксации прохождения вихря. То есть, частота давления и образования вихрей буде одна и та же, что дает возможность измерить расход воздушной смеси. На выходе при помощи АЦП аналоговый сигнал преобразовывается в цифровой, и передается в ЭБУ.
  • В – специальные трубки, формирующие воздушный поток, близкий по свойствам к ламинарному.
  • С – обводные воздуховоды.
  • D – колона с острыми кромками, на которых формируются вихри Кармана.
  • Е – отверстия, служащее для замера давления.
  • F – направление воздушного потока.

Особенности, диагностика и замена элементов систем впрыска на ВАЗовских авто

Ниже рассмотрим основные контроллеры!

Холла

Есть несколько вариантов, как можно проверить датчик Холла ВАЗ:

  1. Использовать заведомо рабочее устройство для диагностики и установить его вместо штатного. Если после замены проблемы в работе двигателя прекратились, это говорит о неисправности регулятора.
  2. С помощью тестера произвести диагностику напряжения контроллера на его выводах. При нормальной работоспособности устройства напряжение должно составить от 0.4 до 11 вольт.

Процедура замены выполняется следующим образом (процесс описан на примере модели 2107):

  1. Сначала производится демонтаж распределительного устройства, выкручивается его крышка.
  2. Затем осуществляется демонтаж бегунка, для этого его надо потянуть немного вверх.
  3. Демонтируйте крышка и выкручивается болт, который фиксирует штекер.
  4. Также надо будет выкрутить болты, которые фиксируют пластину контроллера. После этого откручиваются винты, которые крепят вакуум-корректор.
  5. Далее, осуществляется демонтаж стопорного кольца, извлекается тяга вместе с самим корректором.
  6. Для отсоединения проводов необходимо будет раздвинуть зажимы.
  7. Вытаскивается опорная пластина, после чего откручиваются несколько болтов и производителя демонтаж контроллера. Производится монтаж нового контроллера, сборка осуществляется в обратной последовательности (автор видео — Андрей Грязнов).

Скорости

О выходе из строя данного регулятора могут сообщить такие симптомы:

  • на холостом ходу обороты силового агрегата плавают, если водитель не жмет на газ, это может привесит к произвольному отключению мотора;
  • показания стрелки спидометра плавают, устройство может в целом не работать;
  • увеличился расход горючего;
  • мощность силового агрегата снизилась.

Сам контроллер расположен на коробке передач . Для его замены нужно будет только поднять колесо на домкрат, отсоединить провода питания и демонтировать регулятор.

Уровня топлива

Датчик уровня топлива ВАЗ или ДУТ используется для обозначения оставшегося объема бензина в топливном баке. Причем сам датчик уровня топлива установлен в одном корпусе с бензонасосом. При его неисправности показания на приборной панели могут быть неточными.

Замена делается так (на примере модели 2110):

  1. Отключается аккумулятор, снимается заднее сиденье автомобиля. С помощью крестообразной отвертки выкручиваются болты, которые фиксируют люк бензонасоса, снимается крышка.
  2. После этого от разъема отсоединяются все подводящие к нему провода. Также необходимо отсоединить и все патрубки, которые подводятся к топливному насосу.
  3. Затем откручиваются гайки, фиксирующие прижимное кольцо. Если гайки заржавели, перед откручиванием обработайте их жидкостью WD-40.
  4. Сделав это, выкрутите болты, которые фиксируют непосредственно сам датчик уровня топлива. Из кожуха насоса вытаскиваются направляющие, а крепления при этом нужно отогнуть отверткой.
  5. На завершающем этапе производится демонтаж крышки, после этого вы сможете получить доступ к ДУТ. Контроллер меняется, сборка насоса и остальных элементов осуществляется в обратном снятию порядке.

Фотогалерея «Меняем ДУТ своими руками»

Холостого хода

Если датчик холостого хода на ВАЗ выходит из строя, это чревато такими проблемами:

  • плавающие обороты, в частности, при включении дополнительных потребителей напряжения — оптики, отопителя, аудиосистемы и т.д.;
  • двигатель начнет троить;
  • при активации центральной передачи мотор может заглохнуть;
  • в некоторых случаях выход из строя РХХ может привести к вибрациям кузова;
  • появление на приборной панели индикатора Check, однако загорается он не во всех случаях.

Видео «Вкратце о замене датчика распредвала на ВАЗе»

Подробнее о том, где расположен датчик распредвала ВАЗ и как произвести его замену в гаражных условиях, вы можете узнать из ролика ниже (автор видео — Vitashka Ronin).

Кратко о ремонте

Как правило, пришедшие в негодность сенсоры МАФ не подлежат ремонту, за исключением тех случаев, когда требует их промывка и чистка.

В некоторых случаях можно произвести ремонт платы объемного ДМРВ, но этот процесс ненадолго продлит жизнь прибору. Что касается плат в пленочных сенсорах, то без специального оборудования (например, программатора для микроконтроллера), а также навыков и опыта, пытаться их восстановить бессмысленно.

Другие симптомы неисправности датчика массового расхода воздуха:

  1. Появление ошибки Check Engine;
  2. Повышенный расход топлива;
  3. Плохо заводится на горячую;
  4. Машина стало медленно разгоняться;
  5. Пропала мощность двигателя.
  6. И т.д.

Неисправности и диагностика устройства

При поломке появляются симптомы, которые сложно не заметить при постоянной эксплуатации ВАЗ 2114:

• Мощность мотора становится ниже; • Автомобиль плохо заводится даже на горячую; • Увеличенный расход горючего; • Разгон проходит медленнее, чем обычно.

Это основные диагнозы. Они могут появиться и при других поломках, затрагивающих силовую установку. Чтобы быть точно уверенным в проблемной работе ДМРВ, необходимо проверить устройство. Способов проверить прибор достаточно много, но из них стоит выделить два основных: визуальный осмотр и тестирование при помощи мультиметра.

Визуальная проверка

Необходимо демонтировать с гофра хомут, который крепится на воздухозаборнике. Открутить его можно крестовой отверткой. Нужно тщательно проверить поверхности гофра и расходомера. Они должны не иметь следов масла или конденсата, а датчик – быть чистыми. Но если владелец ВАЗ 2114 редко меняет воздушный фильтр, то можно не удивляться поломке ДМРВ – попадание грязи будет смертельно для электроники.

Масло на датчике – это предупреждение, что в картере повысился масляной уровень, также причиной может быть засорившийся маслоотбойник. Чтобы проверить эту теорию, необходимо убрать два крепления десятым ключом и достать расходомер из корпуса фильтра. На входном крае воздушного фильтра должно быть установлено уплотняющее кольцо из резины. Если его на месте нет, значит оно попало в воздушный фильтр. При такой ситуации на входной сеточке ДМРВ появляется небольшой налет пыли. Подобная недоработка тоже часто выводит из строя прибор, поэтому необходимо менять воздушный фильтр в ВАЗ 2114, а также регулярно проверять его. В случае с пылевым налетом, датчик ВАЗ 2114 можно вернуть к жизни – его нужно аккуратно прочистить, надеть уплотнитель и поместить внутрь корпуса.

Проверка при помощи мультиметра

Такой способ подходит для современных расходомеров. Чтобы проверить его, необходимо включить мультиметр и поставить его замера постоянного тока. Предел на приборе нужно поставить на 2 Вольта. ДМРВ имеет следующую распиновку:

• Розово-черный ведет к основному реле; • Желтый провод идет к входу сигнала (он находится в стороне лобового стекла); • Зеленый провод – заземление; • Серо-белый провод – выход напряжения.

Если цвета могут изменяться в зависимости от производителя, то расположение всегда остается одинаковым. Теперь необходимо активировать зажигание, при этом запускать мотор не нужно. Следует взять мультиметр и подключить его красный щуп к сигнальному желтому проводу, а черный – к зеленому. Такая комбинация позволяет померят напряжение между двумя элементами. Концы щупов тестера позволяют произвести замеры без повреждения изоляции конструкции – нужно идти вдоль указанных проводов.

Проверка ДМРВ мультиметром

1. Проверяем напряжение на колодке ДМРВ:

  1. Устанавливаем мультиметр в режим вольтметра.
  2. Снимаем разъем с проводами от ДМРВ (отщелкиваем фиксатор).
  3. Включаем зажигание.
  4. Подсоединяем «минусовой» щуп прибора к «массе» двигателя, а другой — к выводу №2 колодки (на колодке есть нумерация).
  5. Замеряем напряжение на выводе №4 колодки.

Напряжение на выводе №2 должно быть не меньше 12 В, а на выводе №4 около 5 В. Если показания прибора отличаются, значит разряжен аккумулятор, неисправна цепь питания или ЭБУ.

2. Проверяем ДМРВ Bosch на Лада Приора и Калина 1 (с артикулами: 0 280 218 004, 0 280 218 037, 0 280 218 116):

  1. Устанавливаем мультиметр в режим вольтметра. (предел измерения 2 В).
  2. Включаем зажигание.
  3. Подсоединяем «минусовой» щуп прибора к выводу №3, а другой — к выводу №1.

Проверяем ДМРВ Bosch

Сравните показания прибора с таблицей:

Напряжение, В Состояние ДМРВ
0.996…1.01 В Напряжение нового ДМРВ
1.01…1.02 Хорошее состояние датчика
1.02…1.03 Нормальное состояние датчика
1.03…1.04 Ресурс датчика подходит к концу
1.04…1.05 «Предсмертное» состояние, если негативных симптомов нет, то эксплуатируем дальше
1.05…и выше Пора заменить датчик

Проверка ДМРВ также показана на видео:

Еще один способ проверить ДМРВ — заменить его на заведомо исправный.

А вы сталкивались с неисправностью ДМРВ? Если датчик массового расхода воздуха оказался исправным, а в работе двигателя наблюдаются проблемы, читайте «Почему троит, дергается, плохо тянет двигатель» и «Почему плавают обороты».

Ключевые слова: датчики lada xray | датчики лада веста | датчики лада ларгус | датчики лада гранта | датчики лада калина | датчики лада приора | датчики 4х4 | ЭСУД Лада Веста | ЭСУД Lada XRAY | ЭСУД Лада Ларгус | ЭСУД Лада Гранта | ЭСУД Лада Калина | ЭСУД Лада Приора | ЭСУД 4х4 | датчики нива | эсуд нива | универсальная статья

4

2

Обнаружили ошибку? Выделите ее и нажмите Ctrl+Enter..

  • Tensa, Kayna, Forta — новые названия LADA
  • Рулевое управление Лада Веста (устройство, отзывы)
  • Как активировать индикатор давления в шинах на панели на Lada Vesta
  • Что делать если сливают бензин на Ниве 4х4 (ВАЗ 2121, 2131)

Параметры ацп датчиков ваз

  • Регистрация
  • Вход
  • В начало форума
  • Правила форума
  • Старый дизайн
  • FAQ
  • Поиск
  • Пользователи

Извините может за глупые вопросы

я так понимаю,это обжимка масс датчиков,находится в 20см от разъема ЭБУ?

А вот «провод из ЭБУ до 3-го контакта ДМРВ»

на диагнозе и по тестеру(3-ий и 5-ый контакт ДМРВ) 0,996

При езде на малом дросселе,при сбросе газа,езде на ХХ и при переключениях дергается.Вроде как симптомы ДМРВ

Универсальный многоканальный АЦП УМ-АЦП1

Тимофей Носов ICQ# 770008 E-mail ntv1978 (at) mail.ru www.miliamper.narod.ru

УМ-АЦП1 – универсальный многоканальный аналогово-цифровой преобразователь (версия 1).

УМ-АЦП1 может использоваться для:

  • мониторинга напряжения на входах;
  • контроля крайних значений;
  • регистрации показаний;
  • управления выходами (нагрузкой).

К устройству можно подключать разнообразные датчики, например, температуры, давления, влажности и пр. Гибкие настройки комплекса могут найти широкое применение в различных сферах – от университетских измерений до автоматизации процессов и технологий «умного дома».

На сайте www.miliamper.narod.ru планируется разместить схемы подключения датчиков и схемы согласования с нагрузкой. В силу нехватки времени на обновление материалов по УМ-АЦП1, убедительно прошу посещать форум (обсуждения), либо оставлять оперативные сообщения в жалобной книге. Таким образом Вы сможете поделиться своими идеями, схемами, конструкторскими решениями и задать вопросы.

УМ-АЦП1 представляет собой программно-аппаратный комплекс, состоящий из:

  • устройства приема и оцифровки аналоговых сигналов (см. схему ниже);
  • программы сбора и обработки полученных сигналов (см. интерфейс ниже, ).

Обмен осуществляется через интерфейс RS-232 (COM-порт). Устройство имеет гальваническую развязку и допускает «горячее» включение и выключение.

Подбор делителей на входе устройства позволяет измерять сигналы в широком диапазоне. Программно можно корректировать смещение сигнала +/- в случае погрешности номиналов сопротивлений делителя.

Точность измерения определяется по формуле:

Например, если делителями задан диапазон 10 В, то точность составляет 10 / 1023 = 0,0097 В или 9,7 мВ.

В программе каждый управляемый выход можно сопоставить с любым входом (каналом) и настроить напряжение срабатывания и отключения по показаниям выбранного канала. В программе имеется возможность эмулирования входного сигнала, что позволяет оценить сделанные настройки. Программно можно задать вывод данных в других единицах измерения и других числовых диапазонах, т.е. адаптировать в случае использования конкретных датчиков. В программе реализована визуальная и звуковая сигнализация, в случае пересечения допустимых границ сигнала. Графики данных можно сохранять в виде графических файлов. Возможен просмотр и печать данных. Гибкие настройки программы позволяют установить желаемую скорость регистрации, ширину измеряемого диапазона. Люди с ограниченными возможностями зрения могут настроить цветовую палитру программы под себя. Программа автоматически сохраняет сделанные настройки.

Схема устройства сбора и управления (5 входов, 6 выходов)

Данная схема предназначена для некоммерческого использования и направлена на изучение возможностей комплекса УМ-АЦП1. Коммерческая версия включает 40 входов и 40 выходов (количество может быть другим).

Устройство собрано на PIC16F876A. Скорость обмена по RS-232 — 9600. Делители (R10-R19) определяют ширину диапазона и рассчитываются таким образом, чтобы на вход контроллера подавалось максимум и не более 5 вольт. Увеличение максимального напряжения на любом из входов ведёт к искажениям на других входах.

Можно воспользоваться формулой, рассчитав для нашей схемы R15 и R10:

Например, предполагается измерять максимум 25В, то R10 по умолчанию 5 кОм, а R15 – 20 кОм. По другим входам, используются сопротивления с аналогичными номиналами, т.к. программно по всем входам задается одинаковое напряжение. На приведенной схеме делители R10-R19 задают ширину диапазона равную 10В. Схема устройства проста и доступна для повторения.

Далее вариант печатной платы ( рисунок в формате Sprint Layout) (использована оптопара TLP521-2; резисторы: R2 – 10 кОм; R3 – 5 кОм, стабилизатор 78L05).

Далее фото собранного устройства.

В этом черновом варианте пока еще не предусмотрены выходы.

На сайте www.miliamper.narod.ru вы можете найти описание по сборке программатора и пошаговые инструкции по прошивке ПИК-контроллера.

Текст прошивки (hex-файл):

:10000000830100308A001028F30003088301A70051 :100010008301A10A0B1127088300F30E730E090058 :100020002030840027301B2083010A128A110E2FF2 :0E00300004068001840A0406031D182800340B :100DC0008301A500C23083169F00413083129F002B :100DD0002508F1000310F10D0310F10D0310710D42 :100DE0009F04A601000000000000A60AFA302602B7 :100DF000031CF22E1F151F19FB2E1E08F200F10115 :100E000083161E08F104831208008301A5008312D3 :100E100003130C1E072F2508990008008B1364008C :100E2000831603138D018C018B010B172830810071 :100E30002F3085008601C03087008312850186012E :100E400087019201940197019D01073083169C0050 :100E50009D018312900119308316990090308312FE :100E6000980026308316980083128C018D01F8308B :100E70008B0581018B168B17A82F41300527443035 :100E800005274330052720300527563005276530D4 :100E90000527723005272E300527313005272E30E3 :100EA000052735300527A62F20080739F1007103E3 :100EB000E0267108A3007208A4002408052723086F :100EC000A72F210805270108A72FA1010B118101D8 :100ED000A82F0608A72F07083F39A72F0714A82F08 :100EE0000710A82F8714A82F8710A82F0715A82F41 :100EF0000711A82F8715A82F8711A82F0716A82F2D :100F00000712A82F8716A82F8712A82F0614A82F1C :100F10000610A82F8614A82F8610A82F0615A82F14 :100F20000611A82F8615A82F8611A82F0616A82F00 :100F30000612A82F8616A82F8612A82F0617A82FEC :100F40000613A82F8617A82F8613A82F2E30052743 :100F500064008C1EA82F1A08A000981CB12F18122C :100F600018162008F100913E0318A62F3E3E031CE0 :100F7000A62F3130F10207308A00C2307107031802 :100F80008A0A8200542F542F542F542F542FA62FE7 :100F9000A62FA62FA62FA62FA62FA62FA62FA62FA9 :100FA000A62FA62F6E2F722F762F7A2F7E2F822FAD :100FB000862F8A2F8E2F922F962F9A2F9E2FA22F19 :100FC000A62F692F612F6B2F652F3D2FA62FA62FE0 :100FD000A62FA62FA62FA62FA62FA62FA62FA62F69 :100FE000A62FA62F702F742F782F7C2F802F842F61 :100FF000882F8C2F902F942F982F9C2FA02FA42FC9 :02400E00723FFF :00000001FF
Интерфейс программы УМ-АЦП1 ().

Если будут какие-то вопросы — пишите

( 2 оценки, среднее 5 из 5 )

Рейтинг
( 1 оценка, среднее 5 из 5 )
Загрузка ...