Единицы измерения вязкости

Формула для расчета коэффициента вязкости в физике. Выделяют динамическую вязкость и кинематическую вязкость. Теория и примеры решения задач по теме

Сила вязкого трения[править | править код]

Сила вязкого трения F, действующая на жидкость, пропорциональна (в простейшем случае сдвигового течения вдоль плоской стенки[2]) скорости относительного движения v тел и площади S и обратно пропорциональна расстоянию между плоскостями h:

F → ∼ − v → ⋅ S h . {displaystyle {vec {F}}sim -{frac {{vec {v}}cdot S}{h}}.} {displaystyle {vec {F}}sim -{frac {{vec {v}}cdot S}{h}}.}

Коэффициент пропорциональности, зависящий от природы жидкости или газа, называют коэффициентом динамической вязкости. Этот закон был предложен Исааком Ньютоном в 1687 году и носит его имя (закон вязкости Ньютона). Экспериментальное подтверждение закона было получено в начале XIX века в опытах Кулона с крутильными весами и в экспериментах Хагена и Пуазёйля с течением воды в капиллярах[3].

Качественно существенное отличие сил вязкого трения от сухого трения, кроме прочего, то, что тело при наличии только вязкого трения и сколь угодно малой внешней силы обязательно придёт в движение, то есть для вязкого трения не существует трения покоя, и наоборот — под действием только вязкого трения тело, вначале двигавшееся, никогда (в рамках макроскопического приближения, пренебрегающего броуновским движением) полностью не остановится, хотя движение и будет бесконечно замедляться.

Коэффициент динамической вязкости

Численное обозначение абсолютной вязкости является индексом сопротивляемости испытуемых веществ взаимному перемещению или скольжению их слоев. 

Единицей измерения коэффициента в системе СИ приняты паскаль-секунды:

Единица измерения коэффициента вязкости


Физическая основа динамического показателя заключается в его соответствии касательному напряжению, которое происходит между слоями вещества, перемещающимися относительно друг друга, при условии расстояния между ними, равного единице длины, и на скорости, равной единице.

Вязкость жидкости

Вязкость жидкости

Вязкость жидкости определяется формулой, в которой динамический коэффициент определяет пропорциональность скорости движения слоев и расстояния между ними:

Вязкость жидкости

  • τ – касательное напряжение;

  • µ – показатель пропорциональности, который является динамическим индексом вещества.

Закон вязкости жидкости был установлен Ньютоном в конце 17 века. Абсолютный показатель зависит от типа газа или жидкости, температуры веществ.

Факторы, влияющие на динамическую вязкость

Динамическая вязкость η зависит от вещества и температуры и указывается в Паскаль * секунду.

  • У жидкостей при повышении температуры динамическая вязкость η сильно уменьшается
  • У газов при повышении температуры динамическая вязкость η увеличивается

Физический смысл вязкости

Для понятия физической сущности такого понятия как вязкость жидкости рассмотрим пример. Пусть есть две параллельные пластинки А и В. В пространство между ними заключена жидкость: нижняя пластинка неподвижна, а верхняя пластинка движется с некоторой постоянной скоростью υ1

Вязкость жидкости

Как при этом показывает опыт, слои жидкости, непосредственно прилегающие к пластинкам (так называемые прилипшие слои), будут иметь одинаковые с ним скорости, т.е. слой, прилегающий к нижней пластинке А, будет находиться в покое, а слой, примыкающий к верхней пластинке В, будет двигаться со скоростью υ1.

Промежуточные слои жидкости будут скользить друг по другу, причем их скорости будут пропорциональны расстояниям от нижней пластинки.

Ещё Ньютоном было высказано предположение, которое вскоре подтвердилось опытом, что силы сопротивления, возникающие при таком скольжении слоев, пропорциональны площади соприкосновения слоев и скорости скольжения. Если взять площадь соприкосновения равной единице, это положение можно записать в виде

Вязкость жидкости

где τ – сила сопротивления, отнесенная к единице площади, или напряжение трения

μ – коэффициент пропорциональности, зависящий от рода жидкости и называемый коэффициентом абсолютной вязкости или просто абсолютной вязкостью жидкости.

Величину dυ/dy – изменение скорости в направлении, нормальном к направлению самой скорости, называют скоростью скольжения.

Таким образом вязкость жидкости – это физическое свойство жидкости, характеризующее их сопротивление скольжению или сдвигу

Вязкость кинематическая, динамическая и абсолютная

Теперь определимся с различными понятиям вязкости:

Динамическая вязкость. Единицей измерения этой вязкости является паскаль в секунду (Па*с). Физический смысл состоит в снижении давления в единицу времени. Динамическая вязкость характеризует сопротивление жидкости (или газа) смещению одного слоя относительно другого.

Динамическая вязкость зависит от температуры. Она уменьшается при повышении температуры и увеличивается при повышении давления.

Кинематическая вязкость. Единицей измерения является Стокс. Кинематическая вязкость получается как отношение динамической вязкости к плотности конкретного вещества.

Определение кинематической вязкости производится в классическом случае измерением времени вытекания определенного объема жидкости через калиброванное отверстие при воздействии силы тяжести

Абсолютная вязкость получается при умножении кинематической вязкости на плотность. В международной системе единиц абсолютная вязкость измеряется в Н*с/м2 – эту единицу называют Пуазейлем.

Коэффициент вязкости жидкости

В гидравлике часто используют величину, получаемую в результате деления абсолютной вязкости на плотность. Эту величину называют коэффициентом кинематической вязкости жидкости или просто кинематической вязкостью и обозначают буквой ν. Таким образом кинематическая вязкость жидкости

ν = μ / ρ,

где ρ – плотность жидкости.

Единицей измерения кинематической вязкости жидкости в международной и технической системах единиц служит величина м2/с.

В физической системе единиц кинематическая вязкость имеет единицу измерения см2/с и называется Стоксом(Ст).

Вязкость некоторых жидкостей

Жидкость t, °С ν, Ст
Вода 0 0,0178
Вода 20 0,0101
Вода 100 0,0028
Бензин 18 0,0065
Спирт винный 18 0,0133
Керосин 18 0,0250
Глицерин 20 8,7
Ртуть 0 0,00125

Величину, обратную коэффициенту абсолютной вязкости жидкости, называют текучестью

ξ = 1/μ

Как показывают многочисленные эксперименты и наблюдения, вязкость жидкости уменьшается с увеличением температуры. Для различных жидкостей зависимость вязкости от температуры получается различной.

Поэтому, при практических расчетах к выбору значения коэффициента вязкости следует подходить очень осторожно. В каждом отдельном случае целесообразно брать за основу специальные лабораторные исследования.

Вязкость жидкостей, как установлено из опытов, зависит так же и от давления. Вязкость возрастает при увеличении давления. Исключение в этом случае является вода, для которой при температуре до 32 градусов Цельсия с увеличением давления вязкость уменьшается.

Что касается газов, то зависимость вязкости от давления, так же как и от температуры, очень существенна. С увеличением давления кинематическая вязкость газов уменьшается, а с увеличением температуры, наоборот, увеличивается.

Методы измерения вязкости. Метод Стокса.

Вязкость жидкости

Область, посвященная измерению вязкости жидкости, называется вискозиметрия, а прибор для измерения вязкости называется вискозиметр.

Современные вискозиметры изготавливаются из прочных материалов, а при их производстве используются самые современные технологии, для обеспечение работы с высокой температурой и давлением без вреда для оборудования.

Существует следующие методы определения вязкости жидкости.

Капиллярный метод.

Сущность этого метода заключается в использовании сообщающихся сосудов. Два сосуда соединяются стеклянной трубкой известного диаметра и длины. Жидкость помещается в стеклянный канал и за определенный промежуток времени перетекает из одного сосуда в другой. Далее зная давление в первом сосуде и воспользовавшись для расчетов формулой Пуазейля определяется коэффициент вязкости.

Метод по Гессе.

Этот метод несколько сложнее предыдущего. Для его выполнения необходимо иметь две идентичные капиллярные установки. В первую помещают среду с заранее известным значением внутреннего трения, а во вторую – исследуемую жидкость. Затем замеряют время по первому методу на каждой из установок и составляя пропорцию между опытами находят интересующую вязкость.

Ротационный метод.

Для выполнения этого метода необходимо иметь конструкцию из двух цилиндров, причем один из них должен быть расположен внутри другого. В промежуток между сосудами помещают исследуемую жидкость, а затем придают скорость внутреннему цилиндру.

Жидкость вращается вместе с цилиндром со своей угловой скоростью. Разница в силе момента цилиндра и жидкости позволяет определить вязкость последней.

Метод Стокса

вискозиметр Гепплера

Для выполнения этого опыта потребуется вискозиметр Гепплера, который представляет из себя цилиндр, заполненный жидкостью.

Вначале делаются две пометки по высоте цилиндра и замеряют расстояние между ними. Затем шарик определенного радиуса помещается в жидкость. Шарик начинает погружаться в жидкость и проходит расстояние от одной метки до другой. Это время фиксируется. Определив скорость движения шарика затем вычисляют вязкость жидкости.

Видео по теме вязкости

Определение вязкости играет большую роль в промышленности, поскольку определяет конструкцию оборудования для различных сред. Например, оборудование для добычи, переработки и транспортировки нефти.

Вместе со статьей “Вязкость жидкости” читают:

Вторая вязкость[править | править код]

Вторая вязкость, или объёмная вязкость, — внутреннее трение при переносе импульса в направлении движения. Влияет только при учёте сжимаемости и (или) при учёте неоднородности коэффициента второй вязкости по пространству.

Если динамическая (и кинематическая) вязкость характеризует деформацию чистого сдвига, то вторая вязкость характеризует деформацию объёмного сжатия.

Объёмная вязкость играет большую роль в затухании звука и ударных волн и экспериментально определяется путём измерения этого затухания.

Коэффициент динамической вязкости газа

Для основных газов величины коэффициента при температуре 0 – 600 градусов Цельсия представлены в таблице:

Коэффициенты вязкости газов

Вязкость газов[править | править код]

В кинетической теории газов коэффициент внутреннего трения вычисляется по формуле

η = 1 3 ⟨ u ⟩ ⟨ λ ⟩ ρ , {displaystyle eta ={frac {1}{3}}langle urangle langle lambda rangle rho ,} {displaystyle eta ={frac {1}{3}}langle urangle langle lambda rangle rho ,}

где ⟨ u ⟩ {displaystyle langle urangle } {displaystyle langle urangle } — средняя скорость теплового движения молекул, ⟨ λ ⟩ {displaystyle langle lambda rangle } {displaystyle langle lambda rangle } − средняя длина свободного пробега. Из этого выражения в частности следует, что вязкость не очень разреженных газов практически не зависит от давления, поскольку плотность ρ {displaystyle rho } rho прямо пропорциональна давлению, а длина пробега ⟨ λ ⟩ {displaystyle langle lambda rangle } {displaystyle langle lambda rangle } — обратно пропорциональна. Такой же вывод следует и для других кинетических коэффициентов для газов, например, для коэффициента теплопроводности. Однако этот вывод справедлив только до тех пор, пока разрежение газа не становится столь малым, что отношение длины свободного пробега к линейным размерам сосуда (число Кнудсена) не становится по порядку величины равным единице; в частности, это имеет место в сосудах Дьюара (термосах).

С повышением температуры вязкость большинства газов увеличивается, это объясняется увеличением средней скорости молекул газа u {displaystyle u} u, растущей с температурой как T {displaystyle {sqrt {T}}} {sqrt {T}}.

Влияние температуры на вязкость газов[править | править код]

В отличие от жидкостей, вязкость газов увеличивается с увеличением температуры (у жидкостей она уменьшается при увеличении температуры).

Формула Сазерленда может быть использована для определения вязкости идеального газа в зависимости от температуры:[4]

μ = μ 0 T 0 + C T + C ( T T 0 ) 3 / 2 , {displaystyle mu =mu _{0}{frac {T_{0}+C}{T+C}}left({frac {T}{T_{0}}}right)^{3/2},} {displaystyle mu =mu _{0}{frac {T_{0}+C}{T+C}}left({frac {T}{T_{0}}}right)^{3/2},}

где

μ — динамическая вязкость (в Па·с) при заданной температуре T;μ0 — контрольная вязкость (в Па·с) при некоторой контрольной температуре T0;T — заданная температура в кельвинах;T0 — контрольная температура в кельвинах;C — постоянная Сазерленда для того газа, вязкость которого требуется определить.

Эту формулу можно применять для температур в диапазоне 0 < T < 555 K и при давлениях менее 3,45 МПа с ошибкой менее 10 %, обусловленной зависимостью вязкости от давления.

Постоянная Сазерленда и контрольные вязкости газов при различных температурах приведены в таблице ниже:

Газ C, K T0, K μ0, мкПа·с
Воздух 120 291,15 18,27
Азот 111 300,55 17,81
Кислород 127 292,25 20,18
Углекислый газ 240 293,15 14,8
Угарный газ 118 288,15 17,2
Водород 72 293,85 8,76
Аммиак 370 293,15 9,82
Оксид серы(IV) 416 293,65 12,54
Гелий 79,4[5] 273 19[6]

Вязкость аморфных материалов

Вязкость аморфных материалов (например, стекла или расплавов), это термически активизируемый процесс[1]:

eta(T)=Acdotexpleft(frac{Q}{R T}right),

где Q — энергия активации вязкости (кДж/моль), T — температура (К), R — универсальная газовая постоянная (8,31 Дж/моль•К) и A — некоторая постоянная.

Вязкое течение в аморфных материалах характеризуется отклонением от закона Аррениуса: энергия активации вязкости Q изменяется от большой величины QH при низких температурах (в стеклообразном состоянии) на малую величину QL при высоких температурах (в жидкообразном состоянии). В зависимости от этого изменения аморфные материалы классифицируются либо как сильные, когда left(Q_H - Q_Lright)&amp;amp;lt;Q_L, или ломкие, когда left(Q_H - Q_Lright)geq Q_L. Ломкость аморфных материалов численно характеризуется параметром ломкости Доримуса R_D=frac{Q_H}{Q_L}: сильные материалы имеют RD < 2, в то время как ломкие материалы имеют R_Dge 2.

Вязкость аморфных материалов весьма точно аппроксимируется двуэкспоненциальным уравнением:

eta(T)=A_1cdot Tcdot left[1+A_2cdotexpfrac{B}{R T}right]cdotleft[1+Cexpfrac{D}{R T}right]

с постоянными A1, A2, B, C и D, связанными с термодинамическими параметрами соединительных связей аморфных материалов.

В узких температурных интервалах недалеко от температуры стеклования Tg это уравнение аппроксимируется формулами типа VTF или сжатыми экспонентами Кольрауша.

Вязкость

Если температура существенно ниже температуры стеклования T < Tg, двуэкспоненциальное уравнение вязкости сводится к уравнению типа Аррениуса

eta(T)=A_LTcdotexpleft(frac{Q_H}{R T}right),

с высокой энергией активации QH = Hd + Hm, где Hd — энтальпия разрыва соединительных связей, то есть создания конфигуронов, а Hm — энтальпия их движения. Это связано с тем, что при T < Tg аморфные материалы находятся в стеклообразном состоянии и имеют подавляющее большинство соединительных связей неразрушенными.

При T > > Tg двуэкспоненциальное уравнение вязкости также сводится к уравнению типа Аррениуса

eta(T)=A_HTcdotexpleft(frac{Q_L}{R T}right),

но с низкой энергией активации QL = Hm. Это связано с тем, что при Tgg T_g аморфные материалы находятся в расправленном состоянии и имеют подавляющее большинство соединительных связей разрушенными, что облегчает текучесть материала.

Связь коэффициента вязкости с числами Рейнольдса и силой трения

Английский механик, физик и инженер Оскар Рейнольдс установил (1876 — 1883 гг.), что характер течения зависит от величины, не имеющей размерностью, и называемой числом Re.

Коэффициент вязкости и число Рейнольдса

Число Рейнольдса используют для отображения соотношения кинематической энергии вещества к энергопотерям на установленной длине в условиях внутреннего трения.

Число Рейнольдса

Формула Пуазейля

Коэффициент вязкости входит в формулу, которая устанавливает зависимость между объемом (V) газа, который протекает в единицу времени через сечение трубы и необходимой для этого разностью давлений (Delta p):

    [V=frac{pi R^4}{8eta }frac{Delta p}{l}left(5right),]

где l — длина трубы, R — радиус трубы.

См.также

  • Вязкость теплоноситетя

Вязкость некоторых веществ[править | править код]

Для авиастроения и судостроения наиболее важно знать вязкости воздуха и воды.

Вязкость воздуха[править | править код]

Зависимость вязкости сухого воздуха от давления при температурах 300, 400 и 500 K

Вязкость воздуха зависит в основном от температуры.При 15,0 °C вязкость воздуха составляет 1,78⋅10−5 кг/(м·с) = 17,8 мкПа·с = 1,78⋅10−5 Па·с. Можно найти вязкость воздуха как функцию температуры с помощью программ расчёта вязкостей газов[12].

Вязкость воды[править | править код]

Зависимость динамической вязкости воды от температуры в жидком состоянии (Liquid Water) и в виде пара (Vapor)

Динамическая вязкость воды составляет 8,90·10−4 Па·с при температуре около 25 °C. Как функция температуры: T = A × 10B/(TC), где A = 2,414·10−5 Па·с, B = 247,8 K, C = 140 K.

Значения динамической вязкости жидкой воды при разных температурах вплоть до точки кипения приведены в таблице:

Температура, °C Вязкость, мПа·с
10 1,308
20 1,002
30 0,7978
40 0,6531
50 0,5471
60 0,4668
70 0,4044
80 0,3550
90 0,3150
100 0,2822

Динамическая вязкость разных веществ[править | править код]

Ниже приведены значения коэффициента динамической вязкости некоторых ньютоновских жидкостей:

Вязкость отдельных видов газов
Газ при 0 °C (273 K), мкПа·с при 27 °C (300 K), мкПа·с
воздух 17,4 18,6
водород 8,4 9,0
гелий 20,0
аргон 22,9
ксенон 21,2 23,2
углекислый газ 15,0
метан 11,2
этан 9,5
Вязкость жидкостей при 25 °C
Жидкость Вязкость, Па·с Вязкость, мПа·с
ацетон 3,06·10−4 0,306
бензол 6,04·10−4 0,604
кровь (при 37 °C) (3—4)·10−3 3—4
касторовое масло 0,985 985
кукурузный сироп 1,3806 1380,6
этиловый спирт 1.074·10−3 1.074
этиленгликоль 1,61·10−2 16,1
глицерин (при 20 °C) 1,49 1490
мазут 2,022 2022
ртуть 1,526·10−3 1,526
метиловый спирт 5,44·10−4 0,544
моторное масло SAE 10 (при 20 °C) 0,065 65
моторное масло SAE 40 (при 20 °C) 0,319 319
нитробензол 1,863·10−3 1,863
жидкий азот (при 77K) 1,58·10−4 0,158
пропанол 1,945·10−3 1,945
оливковое масло 0,081 81
пек 2,3·108 2,3·1011
серная кислота 2,42·10−2 24,2
вода 8,94·10−4 0,894

См. также

  • Уравнения Навье-Стокса

Источники

  • Талнахский механический завод
  • Вязкость
  • Гидравлика
  • Википедия

Источники

  • Талнахский механический завод
  • Вязкость
  • Гидравлика
  • Википедия

Примечания[править | править код]

  1. Внутреннее трение в металлах, полупроводниках, диэлектриках и ферромагнетиках: Сб. статей (рус.) / Под ред. Ф. Н. Тавадзе. — М.: Наука, 1978. — 235 с.
  2. В общем случае это не так.
  3. О некоторых ошибках в курсах гидродинамики, с. 3—4.
  4. Alexander J. Smits, Jean-Paul Dussauge Turbulent shear layers in supersonic flow. — Birkhäuser, 2006. — P. 46. — ISBN 0-387-26140-0.
  5. Data constants for Sutherland’s formula.
  6. Viscosity of liquids and gases.
  7. Хмельницкий Р. А. Физическая и коллоидная химия: Учебних для сельскохозяйственных спец. вузов. — М.: Высшая школа, 1988. — С. 40. — 400 с. — ISBN 5-06-001257-3.
  8. Попов Д. Н. Динамика и регулирование гидро- и превмосистем : Учеб. для машиностроительных вузов. — М. : Машиностроение, 176. — С. 175. — 424 с.
  9. Седов Л. И. Механика сплошной среды. Т. 1. — М.: Наука, 1970. — С. 166.
  10. Френкель Я. И. Кинетическая теория жидкостей. — Ленинград, Наука, 1975. — с. 226.
  11. Ojovan M. Viscous flow and the viscosity of melts and glasses. Physics and Chemistry of Glasses, 53 (4) 143—150 (2012).
  12. Gas Viscosity Calculator.

Единицы измерения коэффициента вязкости

Основной единицей измерения коэффициента динамической вязкости в системе СИ является:

left[eta right]=Па• c

В СГС:

left[eta right]=пуаз

1Па• c=10 пуаз

Основной единицей измерения коэффициента кинематической вязкости в системе СИ является:

    [left[nu right]{rm =}frac{m^2}{{rm c}}]

В СГС:

left[nu right]=frac{cm^2}{c}=стокc

См. также[править | править код]

  • Уравнения Навье — Стокса
  • Закон вязкого трения Ньютона
  • Течение Пуазёйля
  • Степенной закон вязкости жидкостей
  • Тиксотропия
  • Реопексия
  • Псевдопластичность
  • Текучесть
  • Вязкоупругость
  • Индекс вязкости
Рейтинг
( 1 оценка, среднее 5 из 5 )
Загрузка ...