Плавное включение и выключение светодиодов

Простейшая схема плавного включения и выключения светодиодов состоит всего из 5 радиоэлементов, но обеспечивает плавность розжига и затухания.

Покупать или делать самому

Первейший вопрос, возникающий при необходимости включения в схему модуля плавного розжига светодиодов, это сделать ли его самостоятельно или купить. Естественно, легче приобрести готовый блок с заданными параметрами. Однако у такого способа решения задачи есть один серьезный минус – цена. При изготовлении своими руками себестоимость такого приспособления снизится в несколько раз. Кроме того, процесс сборки не займет много времени. К тому же, существуют проверенные варианты устройства – остается лишь обзавестись нужными компонентами и оборудованием и правильно, в соответствии с инструкцией их соединить.

Светодиоды

Обратите внимание! Лэд-освещение находит широкое применение в автомобилях. Например, это могут быть дневные ходовые огни и внутренняя подсветка. Включение блока плавного розжига для светодиодных ламп позволяет в первом случае существенно продлить срок эксплуатации оптики, а во втором – предотвратить ослепление водителя и пассажиров резким включением лампочки в салоне, что делает подсветительную систему более визуально комфортной.

Сообщества › Электронные Поделки › Блог › Плавный розжиг и затухание освещения салона

Давно хотел и наконец то решился сделать плавный розжиг и плавное затухание освещения салона (будь то открытие дверей или ручное его включение). Поискав немного в интернете, выбрал наиболее удачную на мой взгляд схему, чуть подправил ее под себя и вчерашним вечером принялся к ее реализации.

Ниже опубликовал видео, демонстрирующее процесс работы данной примочки. Качество, к сожалению, не очень, так так снимал ночью и на телефон.

Сборник принципиальных схем

Вначале идут общеизвестные схемы из Интернета, а далее несколько собранных лично и прекрасно работающих. Первая схема простейшая – при подаче питания диод постепенно увеличивает яркость (открывается транзистор по мере заряда конденсатора):

Делал вот такую схему плавного включения и выключения светодиодов, резистором R7 подбирается нужный ток через диод. А если вместо кнопки подключить вот этот прерыватель, то схемка сама будет разжигаться и затухать, только резистором R3 нужно установить нужный интервал времени.

Вот ещё две схемы плавного розжига и затухания, которые также лично паял:

Все эти конструкции относятся не к сетевым (от 220 В), а обычным низковольтным светодиодным индикаторам. Промышленные LED лампы с их неизвестными драйверами, чаще всего в разных плавных контроллерах работают непредсказуемо (или мигают, или включаются всё-таки резко). Так что управлять нужно не драйверами, а непосредственно светодиодами. Схемы предоставил senya70.

   Форум по LED

   Форум по обсуждению материала ПЛАВНОЕ ВКЛЮЧЕНИЕ / ВЫКЛЮЧЕНИЕ СВЕТОДИОДОВ

Как сделать плавное включение ламп накаливания и для чего оно нужно

Ночью глазам не очень комфортен такой режим. Подскажите идеи, как реализовать плавный розжиг и затухание светодиодной ленты без постоянно включенного в блока питания? Плавный розжиг и затухание светодиодной ленты, как и любого другого осветителя реализуется электронными диммерами. Но задача чуть более сложна — ночью яркость подсветки, на которую включается лента или другой осветитель должна быть заметно ниже, чем днем. А еще, если светодиодная лента с изменяемой световой температурой, вечером и ночью лучше смотрятся более желтые оттенки, а днем — более голубые.

Плавный розжиг панели приборов двухканальный v , цена грн., купить Курахово Работает со светодиодами (платы пересвета, светодиодные ленты и т.п.) Плавного затухания нет. Схема подключения устройства.

Дневные ходовые огни своими руками: схема

По требованиям дневные огни должны автоматически включаться вместе с запуском двигателя. Производить их включение и выключение надо без помощи дополнительного инструмента (то есть непосредственно из салона автомобиля).

Для этого ДХО коммутируется в блок подачи напряжения на центральные фары. Наиболее распространенной законной схемой установки является схема подключения, при которой дневные огни включаются вместе с фарами.

Следует помнить, что установка ДХО своими руками должна придерживаться требований ГОСТ Р 41.48-2004, которые обязывают всякое изменение в описании доводить до сведения Органа по сертификации.

Этот орган может вынести два вердикта:

  • прийти к заключению, что транспортное средство соответствует стандартным требованиям и изменения, которые внесли, не окажут отрицательного влияния
  • запросить дополнительный протокол лаборатории, которая уполномочена проводить испытания

Метки: освещение, плафон, плавный пуск

Комментарии 43

подскажите, а биполярный транзистор подойдёт сюда(КТ837Д)?

а печатку в спринте рисовал? если да, то можешь мне скинуть?

Вечером посмотрю на домашнем компьютере, если осталась то скину.

в качестве дружеской критики: 1. вместо никнейма лучше було бы оставить полигон для тепло-отвода, да и вообще развести плату так, чтобы травить не надо было, а можно было бы расчертить канц.ножом на изолированные площадки 2. провода к плате не паять, а присоединять разъемом — когда захотите улучшить девайс, можно было просто его заменить

Тепло-отвод явно лишнее…Транзистор мощный, а диоды в плафоне потребляют совсем чуть чуть. Оно выше температуры окружающей среды и не нагревается. По поводу разметки платы канц ножом — ну не люблю я такой колхоз. Лучше потрачу лишние пол часа — час, но сделаю все красиво. Разъем стоит, только не на самой плате, а на пяти сантиметровом отрезке проводов. Так удобнее размещать устройство под потолком — сначала прилепил как надо, а потом и провода соединил.

а каким способом ты травил плату? каким наносил на тексталит ее?

Дорожки наносил с помощью фоторезиста. Травил в растворе перекиси водорода, соли и лимонной кислоты.

а я помню, раньше лаком дорожки рисовал… травил в хлорном железе))) так уже не делают?))) ппц я отстал…

Ну лаком сейчас уже наверное точно никто не рисует, проще тем же ЛУТом сделать. А вот хлорное железо я сам до недавнего времени использовал, пока не узнал про способ с перекисью водорода — и достать проще, и дешевле, да и все вокруг не пачкает)))

а каким способом ты травил плату? каким наносил на тексталит ее?

ТекстОлит. А вообще-то — это стеклотекстолит.

ну все, с умничал…

Нравится быть не грамотным — оставайтесь…

а вы часто пользуетесь текстолитом? раз тут оказался стеклотекстолит… я думаю и так понятно, что это за материал… ошибка в названии — да, запомнил как правильно. но. ошибкой не считаю, что материал для плат называю просто текстолитом. думаю многие так и говорят, что б не удлинять и так понятное слово. это как всегда добавлять аккумулятор свинцово-кислотный в машине. думаю и вы не добавляете. стеклотекстолит = текстолит. суть того, о чем идет речь ничуть не меняется.

Дело в том, что текстолит — это ткань пропитанная клеем. Он коричневого цвета. www.ru.all.biz/img/ru/catalog/2068698.jpeg Он не металлизируется и не используется для производства печатных плат.

А стеклотекстолит — это стеклоткань пропитааная эпоксидной смолой, он светоложёлтого цвета. И свойства материалов сильно отличаются.

Ещё в качестве диэлектрика для печатных плат используют гетинакс — это бумага, пропитанная клеем. Тоже, кстати, коричневого цвета.

В бытовой технике часто используется гетинакс (ранее преимущественно, только гетинакс использовался). Стеклотекстолит стал его вытеснять пару десятилетий назад.

Да, я давно занимаюсь электроникой, 40 лет уже. Первую печатную плату разработал и изготовил в возрасте 12 лет, т.е. в 1982 году…

Элементы схемы

Главный элемент управления – мощный n-канальный МОП транзистор IRF540, ток стока которого может достигать 23 А, а напряжение сток-исток – 100В. Рассматриваемое схемотехническое решение не предусматривает работу транзистора в предельных режимах. Поэтому радиатор ему не потребуется.

Вместо IRF540 можно воспользоваться отечественным аналогом КП540.

Сопротивление R2 отвечает за плавный розжиг светодиодов. Его значение должно быть в пределах 30–68 кОм и подбирается в процессе наладки исходя из личных предпочтений. Вместо него можно установить компактный подстроечный многооборотный резистор на 67 кОм. В таком случае можно корректировать время розжига с помощью отвертки.

Сопротивление R3 отвечает за плавное затухание светодиодов. Оптимальный диапазон его значений 20–51 кОм. Вместо него также можно запаять подстроечный резистор, чтобы корректировать время затухания. Последовательно с подстроечными резисторами R2 и R3 желательно запаять по одному постоянному сопротивлению небольшого номинала. Они всегда ограничат ток и предотвратят короткое замыкание, если подстроечные резисторы выкрутить в ноль.

Сопротивление R1 служит для задания тока затвора. Для транзистора IRF540 достаточно номинала 10 кОм. Минимальная емкость конденсатора С1 должна составлять 220 мкФ с предельным напряжением 16 В. Ёмкость можно увеличить до 470 мкФ, что одновременно увеличит время полного включения и выключения. Также можно взять конденсатор на большее напряжение, но тогда придется увеличить размеры печатной платы.

Что нужно

Чтобы грамотно собрать модуль плавного розжига для светодиодов, потребуется набор следующих инструментов и материалов:

  1. Паяльная станция и комплект расходников (припой, флюс и проч.).
  2. Фрагмент текстолитового листа для создания платы.
  3. Корпус для размещения компонентов.
  4. Необходимые полупроводниковые элементы – транзисторы, резисторы, конденсаторы, диоды, лед-кристаллы.

Однако прежде чем приступить к самостоятельному изготовлению блока плавного пуска/затухания для светодиодов, необходимо ознакомиться с принципом его работы.

На изображении представлена схема простейшей модели устройства:

Плавный розжиг и затухание светодиодов: особенности, устройство, схема

В ней три рабочих элемента:

  1. Резистор (R).
  2. Конденсаторный модуль (C).
  3. Светодиод (HL).

Резисторно-конденсаторная цепь, основанная на принципе RC-задержки, по сути и управляет параметрами розжига. Так, чем больше значение сопротивления и емкости, тем дольше период или более плавно происходит включение лед-элемента, и наоборот.

Рекомендация! В настоящий момент времени разработано огромное количество схем блоков плавного розжига для светодиодов на 12В. Все они различаются по характерному набору плюсов, минусов, уровню сложности и качеству. Самостоятельно изготавливать устройства с пространными платами на дорогостоящих компонентах нет резона. Проще всего сделать модуль на одном транзисторе с малой обвязкой, достаточный для замедленного включения и выключения лед-лампочки.

Плавный розжиг и затухание светодиодов, схема

Простой электро тюнинг автомобиля с помощью плавно вспыхивающих и гаснущих светодиодов. Отечественные автомобили выпускаются с расчётом на среднего потребителя. Многих автолюбителей это не устраивает, поэтому такое авто стремятся доработать. Прежде всего, это касается подсветки приборной доски и салона.

Устройство плавной регулировки светодиодной подсветки можно собрать самому. В интернете легко найти интересную схему.

Без всякого сомнения, самой простой и надёжной является схема на полевом транзисторе. Рассмотрим подробнее.

Подсветка приборки.

Когда говорят о доработке приборной панели, то имеют в виду тюнинг электрики, который позволяет с помощью светодиодов сделать её уникальной.

Немного о работе схемы….

После включения зажигания, схема запитывается напряжением +12 V и переводится в режим ожидания.

При включении габаритов управляющее напряжение +12 V через цепочку, состоящую из диода D2 и резистора R1, поступает на транзистор КТ 503. Транзистор открывается. Электролитический конденсатор С1 заряжается.

Плавно растущее напряжение, подаётся на полевой транзистор VT1. Он плавно открывается, и постепенно увеличивает выходное напряжение, поступающее на светодиоды. Происходит их плавное загорание.

При выключении габаритов, снимается управляющее напряжение, и закрывается транзистор КТ 503. Электролитический конденсатор С1 плавно разряжается через R3. Следовательно, уменьшается напряжение на транзисторе VT1, а значит и выходное напряжение.

По мере разрядки конденсатора гаснут светодиоды.

Когда конденсатор полностью разрядится, схема снова переходит в режим ожидания, при котором потребляемый ток почти отсутствует.

Нагрузкой транзистора VT1 может быть сборка на светодиодах LED или светодиодная лента. Транзистор IRF 9540 может работать с нагрузкой до 140 Вт.

В схеме допускается производить регулировки:

• резистором R1 регулируется скорость загорания светодиодов. Чем больше номинал, тем дольше загорание; • резистором R3 регулируется скорость гашения светодиодов. Чем больше номинал, тем дольше гашение; • ёмкость С1 влияет на скорость загорания и гашения светодиодов. Чем больше номинал, тем скорость меньше.

Подсветка салона

Плавная подсветка салона имеет свои достоинства:

во-первых, при мгновенном включении света, глазам необходимо время, чтобы к нему привыкнуть. В отдельных случаях это вызывает болевые ощущения для глаз;

во-вторых, плавное изменение освещения положительно влияет на эстетику салона, и делает его более привлекательным.

Основа основ плавного включения

Давайте начнем с элементарных вещей и вспомним, что такое RC – цепь и как она связана с плавным розжигом и затуханием светодиода. Посмотрите на схему.

RC - цепь

В ее состав входит всего три компонента:

  • R – резистор;
  • C – конденсатор;
  • HL1 – подсветка (светодиод).

Два первых компонента и составляют RC – цепь (произведение сопротивления и емкости). От увеличения сопротивления R и емкости конденсатора C увеличивается время розжига LED. При уменьшении, наоборот.

Мы не будем углубляться в основы электроники и рассматривать, как протекают физические процессы (точнее ток) в данной схеме. Достаточно знать, что она лежит в основе работы всех устройств плавного розжига и затухания.

Рассмотренный принцип RC – задержки лежит в основе всех решений плавного включения и выключения светодиодов.

Управление по «минусу»

Выше переведенные схемы отлично подходят для применения в автомобиле. Однако сложность некоторых электрических схем состоит в том, что часть контактов замыкается по плюсу, а часть – по минусу (общему проводу или корпусу). Чтобы управлять приведенной схемой по минусу питания, её нужно немного доработать. Транзистор нужно заменить на p-канальный, например IRF9540N. Минусовой вывод конденсатора соединить с общей точкой трёх резисторов, а плюсовой вывод замкнуть на исток VT1. Доработанная схема будет иметь питание с обратной полярностью, а управляющий плюсовой контакт сменится на минусовой. схема с управляющим минусом

Схемы плавного включения и выключения светодиодов

Существует два популярных и доступных для самостоятельного изготовления варианта схем плавного розжига для светодиодов:

  1. Простейшая.
  2. С функцией установки периода пуска.

Рассмотрим, из каких элементов они состоят, каков алгоритм их работы и главные особенности.

Простая схема плавного включения выключения светодиодов

Только на первый взгляд схема плавного розжига, представленная ниже, может показаться упрощенной. В действительности она весьма надежна, недорога и отличается множеством преимуществ.

Плавный розжиг и затухание светодиодов: особенности, устройство, схема

В ее основе лежат следующие комплектующие:

  1. IRF540 – транзистор полевого типа (VT1).
  2. Емкостный конденсатор на 220 мФ, номиналом на 16 вольт (C1).
  3. Цепочка резисторов на 12, 22 и 40 килоОм (R1, R2, R3).
  4. Led-кристалл.

Устройство работает от источника питания постоянного тока на 12 В по следующему принципу:

  1. При запитывании цепи через блок R2 начинает течь ток.
  2. Благодаря этому элемент C1 постепенно заряжается (повышается номинал емкости), что в свою очередь способствует медленному открыванию модуля VT.
  3. Увеличивающийся потенциал на выводе 1 (затворе полевика) провоцирует похождение тока через R1, что способствует постепенному открыванию вывода 2 (стока VT).
  4. Как результат, ток переходит на исток полевого блока и на нагрузку и обеспечивает плавный розжиг светодиода.

Процесс угасания лед-элемента идет по обратному принципу – после снятия питания (размыкания «управляющего плюса»). При этом конденсаторный модуль, постепенно разряжаясь, передает потенциал емкости на блоки R1 и R2. Скорость процесса регламентируется номиналом элемента R3.

Основным элементом в системе плавного розжига для светодиодов является транзистор MOSFET IRF540 полевого n-канального типа (как вариант можно использовать российскую модель КП540).

Плавный розжиг и затухание светодиодов: особенности, устройство, схема

Остальные компоненты относятся к обвязке и имеют второстепенное значение. Поэтому нелишним будет привести здесь его основные параметры:

  1. Сила тока стока – в пределах 23А.
  2. Значение полярности – n.
  3. Номинал напряжения сток-исток – 100В.

Важно! Ввиду того, что быстрота розжига и затухания светодиода полностью зависит от величины сопротивления R3, можно подобрать необходимое его значение для задания определенного времени плавного пуска и выключения лед-лампочки. При этом правило выбора простое – чем выше сопротивление, тем дольше зажигание, и наоборот.

Доработанный вариант с возможностью настройки времени

Нередко возникает необходимость изменения периода плавного розжига светодиодов. Рассмотренная выше схема не дает такой возможности. Поэтому в нее нужно внедрить еще два полупроводниковых компонента – R4 и R5. С их помощью можно задавать параметры сопротивления и тем самым контролировать скорость зажигания диодов.

Плавный розжиг и затухание светодиодов: особенности, устройство, схема

Приведенные выше версии схем предполагают управление по плюсу, однако в некоторых ситуациях требуется контроль по минусу. В таком случае система будет иметь обратную полярность. Поэтому в ней нужно поставить конденсатор наоборот – чтобы плюсовой заряд шел на транзисторный исток. Кроме того, необходимо заменить и сам транзистор, теперь он должен быть p–канального типа, к примеру, IRF9540N.

Особенности схемы с настройкой времени

Чтобы иметь возможность самостоятельно настроить продолжительность выключения и включения, в цепь добавляются резисторы.

резисторами №4 и 5.

Рис.7 – схема с добавленными резисторами R4 и R5.

Для плавного включения светодиодов рекомендуется брать резисторы R3 и R2 небольших номиналов. Параметры резисторов R4 и R5 дают возможность держать под контролем скорость затухания и включения.

Видео

Для углубленного понимания всего происходящего в рассмотренных вариантах предлагаем посмотреть интересное видео, автор которого, при помощи программы проектировки электронных схем, постепенно показывает принцип работы плавного включения и выключения светодиода на разных вариантах. Внимательно посмотрев видео, Вы поймете почему обязательно нужно использовать транзистор.

Особенности подключения светодиодов

В большинстве случаев для подключаемых светодиодов требуется ограничение тока с помощью резисторов. Но, иногда вполне возможно обойтись и без них. Например, фонарики, брелоки и другие сувениры со светодиодными лампочками питаются от батареек, подключенных напрямую. В этих случаях ограничение тока происходит за счет внутреннего сопротивления батареи. Ее мощность настолько мала, что ее попросту не хватит, чтобы сжечь осветительные элементы.

Однако при некорректном подключении эти источники света очень быстро перегорают. Наблюдается стремительное падение яркости свечения, когда на них начинает действовать нормальный ток. Светодиод продолжает светиться, но в полном объеме выполнять свои функции он уже не может. Такие ситуации возникают, когда отсутствует ограничивающий резистор. При подаче питания светильник выходит из строя буквально за несколько минут.

Как подключить светодиод к 12 вольтам

Одним из вариантов некорректного подключения в сеть на 12 вольт является увеличение количества светодиодов в схемах более мощных и сложных устройств. В этом случае они соединяются последовательно, в расчете на сопротивление батарейки. Однако при перегорании одной или нескольких лампочек, все устройство выходит из строя.

Существует несколько способов, как подключить светодиоды на 12 вольт схема которых позволяет избежать поломок. Можно подключить один резистор, хотя это и не гарантирует стабильную работу устройства. Это связано с существенными различиями полупроводниковых приборов, несмотря на то, что они могут быть из одной партии. Они обладают собственными техническими характеристиками, отличаются по току и напряжению. При превышении током номинального значения один из светодиодов может перегореть, после этого остальные лампочки также очень быстро выйдут из строя.

Устанавливать или нет?

Кто-то скажет, что раньше жили без подобных устройств и даже не думали о подобном, и все было в порядке. Но ведь раньше и об экономии как-то не задумывались.

Конечно, возникает много вопросов по поводу УПВЛ. Стоит или нет тратить время и деньги на установку или изготовление своими руками подобного устройства, будет ли какая-либо экономия, а если да, то через какое время прибор оправдает свою покупку? Здесь каждый решает сам. Но то, что значительно экономится электроэнергия, и к тому же срок службы ламп при использовании УПВЛ увеличивается многократно – доказанный временем факт. А потому, если есть возможность установить подобное устройство, то нужно это сделать.

Подключение диммера к светодиодам своими руками

Чтобы подключить светорегулятор собственноручно вам понадобится лишь приобретённое устройство, специальный динамометрический ключ и любое удобное режущее средство для зачистки проводов.

Пошаговая инструкция состоит из трёх этапов:

  1. Перед началом всех монтажных работ необходимо обязательно выключить в доме всё электричество.
  2. Далее следует зачистить провода на приборе и подключить их таким образом, чтобы фазовый провод был установлен в клемму под названием L, а второй был подключен к разъёму под названием N.
  3. На завершающем этапе эти провода следует зажать и закрутить все имеющиеся болты, надев специальную рамку.

Стоимость может зависеть от разновидности модели и наличия всех дополнительных функций. Более дорогие модели могут похвастаться обширным перечнем различных вспомогательных опций, позволяющих с наибольшим комфортом использовать данное устройство. Цена варьируется в пределах от 100 до 1000 рублей. Гораздо дороже вам обойдутся модели с дистанционным управлением.

Рейтинг
( 1 оценка, среднее 5 из 5 )
Загрузка ...